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Abstracf-We present  an  integrated system for  the 
intelligent progressive transmission of  data  for  deep  space 
communications. This work  is  motivated by the realization 
that  much more information  can be collected by imaging and 
remote sensing equipment  than  can be transmitted  through 
downlink channels. Suitable onboard  science  processing 
allows us to introduce semantics to the data  collected  by  the 
imaging and remote sensing equipment. The data  stream is 
then  prioritized  according  to its significance in the image, 
and the  most significant segments of  data  are  transmitted 
first by means of a prioritized  buffer  management strategy. 
We  show  that this system allows to optimally exploit the 
limited  onboard  resources  (downlink  data rate, buffer  size) 
and therefore to maximize the science return of a mission. 
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1. INTRODUCTION 
Future spacecrafts  and Mars rovers  will  have  the ability to 
acquire increasingly  larger  loads of scientific data.  Imaging 
and multispectral instruments will  be  deployed in order to 
send to Earth as much  information as possible, for  fruition 
by both  the scientific community and  the  general public. 
Unfortunately,  the  communication  bit-rate  represents an 
unavoidable  bottleneck for the  transmission of such  loads of 
data.  Traditional  waveform compression techniques me 
plainly  inadequate  for  this  scenario,  unless one is willing to 
accept a severe  degradation  of  the entire image. In  order to 
sidestep  the communication bottleneck, one could in 
principle  store images and  other  data in memory as they me 
acquired,  for transmission during  “lazy”  periods  (for 
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example, in the  case  of a Mars Rover, at night). However, 
the  onboard  buffer size is  forcefully limited, and part of  the 
data needs to be  thrown  away.  What makes things worse, in 
the  case of  deep  space communications interactivity is 
severely limited, due to the long  latency and the scarce 
opportunities of uplink. Hence,  “browsing”  low-resolution 
versions of the images in order to decide  which ones should 
be transmitted at full resolution (a technique  widely used in 
multimedia communications on the Internet) is not an 
option  here. 

It  is clear that  not  all  the  data gathered in a mission can be 
transmitted to Earth. The question is, What  part  of  the data 
should  be  downlinked, and  what  should  be  trashed?  We  will 
try  to answer this  question by: 
1. Defining a metric for  measuring the relative 

“importance” of gathered  information; 
2. Representing by a simple model the dynamics of data 

collection and the constraints and  parameters  of  the 
processing/transmission system. 

This approach  will allow us to quantify  the  performance of 
any  communication system by measuring  the quantity of 
“important”  information  transmitted to Earth as allowed by 
the constraints of  the  model. 

Clearly, traditional  techniques  for  progressive  compression 
(also known as scalable or hierarchical or embedded  coding) 
can be analyzed  under this framework too. For example, the 
so-called  “spectral  selection”  method  of JPEG for 
progressive  coding [l] orders  the  compressed  bitstream so 
that  DCT  coefficients  corresponding to lower spatial 
frequencies in the  image  are  transmitted first. This is 
equivalent to assigning more  importance to lower  spatial 
frequencies  than to higher  frequencies.  More  sophisticated 
techniques for embedded image coding  such as the EZW 
algorithm [2] or the SPIHT algorithm [3] generate 
representations  that  are  coarse-to-fine in  both the spectral 
domain  and  range simultaneously. Thus, coefficients  that 
correspond to coarser  scales and have  larger  magnitude are 
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transmitted first, thereby minimizing a  more  meaningful 
distortion criterion  than spectral selection. 

In general,  progressive  encoding  represents  an  “optimal” 
design solution because it “adapts itself’ to the  available 
resources.  A  progressive  encoder  generates  a  properly ordered 
bitstream. If there is enough buffer  memory to store all  the 
encoded data, and enough time to transmit it, the image will 
be received in its integrity. In general,  these conditions will 
not satisfied, and only a smaller volume of  data  will  be 
transmitted. Although we  may  not  be able to a priori 
estimate the size of the transmitted  bitstream (since this is 
determined  by  the  dynamics  of  the 
acquisitionlprocessingltransmission process), we are 
guaranteed that it is the “most important” information in  the 
image that  will  be transmitted. 

The goal of this  work  was to extend  the  idea  of  progressive 
transmission by incorporating semantic value to the 
“importance” attributes of  encoded data. In particular, we 
define  a simple measure  of science  rerum based  on 
information theoretic considerations as well as on the ground 
of the scientific  value of the  transmitted  data. The task of 
determining the relative scientific  importance  of segments of 
data is  carried  out by  an onboard  science processing module, 
designed  according  to  guidelines  provided by the  remote user 
(the science community.) This module  pre-processes  the 
image and provides input to the  progressive encoder in the 
form of a suitable “classification  map”. By combining the 
semantic  characterization  produced by the science  processing 
module  with  the  content-blind  data  organization  criteria of 
traditional  progressive  encoder, we obtain  a new  measure  of 
the “importance” of  each segment of  data. Algorithms that 
best utilize the available resources  can thus be designed and 
their  performances in terms of science  return  assessed. 

Extensive studies are  under  way at JPL as well as  at other 
NASA  centers for the development of systems able to 
autonomously detect  features of scientific interest in 
remotely acquired images. Many  proposed  techniques are 
based on computer  vision  and  pattern  recognition algorithms 
[4,5]. Increasingly  available  onboard computational power 
and  memory  are the key factors enabling a  whole  collection 
of science processing  modules,  targeted  at  various  features of 
interest. The simplest embodiment  of  a  science  processing 
module  is an algorithm that segments an  image into 
“important”  and “less important”  areas. Clearly, the  concept 
of “scientific  importance” of a segment of  data  will  change 
depending  on the final user. For example, a geologist may 
be  interested in finding  carbonates  on Mars, therefore  she 
may consider important any  part of the  scene characterized 
by the  presence  of  layered  geological formations. An 
astrobiologist may  be  interested in color bands  on  a  rock 
surface  which  may  reveal  biotic  material.  And, in general, 
any  unexpected  (and  therefore  highly  informative) situation 
should  probably be given highest priority. It is extremely 
important that the system be open to different  interpretation 

of  the  data or, in other words, that it can  accept  a  whole 
library of science  processing  modules,  tuned to different 
science tasks. 

We should stress the fact that  while  progressive  encoders are 
content-blind,  meaning that they  know nothing about the 
scientific content of the images, science  processing  modules 
are  representation-blind, in that  they  are  unaware of  the 
actual  processing (such as transformations, quantization and 
entropy  coding) performed  by the  encoder. Thus, the two 
modules can be  logically  decoupled. The interface between 
the  science  processing  module and the  progressive encoder is 
in the form of a classification map,  which assigns each pixel 
to one class in a predefined set. The encoder uses this 
information to produce a  hierarchical  ordering  of  the 
compressed  bitstream  which is both content and 
representation  aware. 

As  discussed previously, beside  providing  a  metric for the 
“importance”  of  a  data segment, we  need to  be able to 
describe  the  dynamics  of  the 
acquisitiodprocessinglcommunication system  from  a global 
standpoint, and  to optimize the system performances  in 
terms of science return. It should  be  clear that, due to the 
possibly variable  rate of  data  acquisition  in  deep  space 
mission, as well as to the  bit-rate  bottleneck of  the 
downlink channel, buffering  is an extremely important 
operation. Buffer memory is a limited resource, and  we 
should  make the best  use of it by means of  a specific control 
strategy. The goal of the combined encodingbuffer system 
is to maximize  the  value  of  data  transmitted and minimize 
the  value of data lost due to buffer overflow. We  introduce  a 
control  strategy  that maximizes the buffer’s  usefulness by 
keeping it constantly full and overflowing. Simulation 
results show the excellent results achievable  with  our 
approach  in  terms  of  science  return in dynamic 
environments. 

2. SCIENCE PROCESSING - A SIMPLE  EXAMPLE 

As  discussed in the  Introduction, the basic goal of a  science 
processing  module  is to produce  a spatial classification map 
for a  given image. The class subdivision should be 
meaningful for the scientific task of interest, and contributes 
to determine  the priority of the  data segments to be 
transmitted.  A  whole  library  of  science  processing  modules 
can  be  accommodated  by the communication system, 
provided  that  they  all  use  a  common interface in the  form of 
a  classification  map. 

In general, it is not  necessary  that classification maps be 
defined just on the spatial domain. For example, one may 
characterize  multispectral  imagery  not only by the image 
segments corresponding to features of interest but  by  the 
characterization of the multispectral features  themselves 
(expressed in terms  of  the  most  relevant  bands or perhaps by 
a suitable combination of  bands). It should  be  pointed out 



that the determination of interesting areas  in  an  image 
should depend  on all  available  contextual  information  (for 
example, from  the analysis of previously  acquired  images). 

In  order to provide a simple yet meaningful  instance of 
science  processing module, we  have  considered the  scenario 
of a Rover traversing  an arid territory  with  rocks scattered 
over  an otherwise sandy  area.  While this should by no 
means be  considered an actual emulation of a real  Mars 
environment, it does give the flavor of the results attainable 
in a planetary exploration. The rocks that populate the sandy 
soil are  of  two kind: basalt (characterized  by a reddish 
surface) and obsidian  (with a blue/gray  appearance). We 
assume that for this particular  instance of  science 
processing, a geologist is primarily  interested in studying 
basaltic formations and,  with a minor emphasis, the 
presence  of obsidian. We also assume  that sand is of 
minimal importance to the scientist, and that anything that 
cannot be characterized as basalt,  obsidian  or  sand may  reveal 
unexpected  material  and  therefore  should  be  given  the 
highest transmission priority. 

In  our experiment, the science processing  module  performs a 
color-based classification of the image [6]. A mixture-of- 
Gaussians model [7] was  used to represent  the  probability 
density  function in  RGB color space  of  each one of  the M 
predefined  classes.  In other words,  we  model the conditional 
likelihood p(c  1 j )  of any given a 3-vector c representing an 
RGB tristimulus given a class j as follows: 

where the  coefficients an,j are the mixing parameters, N(j)  
is  the  number of Gaussians in the mixture, and pflJ and 

are the mean vector and  covariance  matrix of the  n-th 
Gaussian g(;.;) in the model: 

The model parameters ( an,j, f i n , j  and  are  estimated  via 
Expectation  Maximization [7] from a set of  labeled  training 
images. A Maximum Likelihood estimator initially 
classifies the test images by assigning each  pixel x to the 
class j which maximizes the  conditional  likelihood 
p ( c ( x ) l j )  (where c ( x )  is the color of pixel x) .  Spatial 
coherence is then  enforced  by  means  of  Besag’s  Iterated 
Conditional Mode algorithm [8]. The determination of 
outliers, that is, of features  that cannot be explained by  any 
of  the M models, is operated  by setting a threshold po, on 
the  unconditional  likelihood p(c), defined by 

where P o )  is the prior probability of class j (in our 
experiments, we set Po)=l /M for all classes). Thus, all 
pixels with color c such that p(c)<p,, are classified as 
outliers. 

The classes we have considered in our experiments ( s e e  
Figures 4 and 5) are  the  “Basalt” class (represented  in  green), 
the  “Obsidian”  class  (represented in yellow),  the  “Sand”  class 
(represented  in  gray), the “Shadow” class (represented  in 
brown) and the “Outlier” class (represented  in  red).  The 
“shadow” class has been  introduced  after  the  experimental 
observation  that image areas  in  dark  shadow cannot be 
classified robustly. In this case, classification into any of  the 
other classes cannot be trusted.  Note that it would be 
incorrect to classify such point as outliers: indeed, outliers 
are a consequence of model  inadequacy  and  not  of  unreliable 
discrimination. 

The classification  procedure described above assigns each 
image  pixel to one class. For implementation reasons  that 
will be clear  in Section 4, it is useful to consider also a 
coarser granularity, by assigning a single class label to each 
one of the 8x8 pixel groups tiling the image plane in a 
regular lattice. The block assignment can  be  carried out in a 
number of ways.  We  have adopted a strategy  of weighted 
majority voting: the 8x8 block under examination is 
assigned to the class j which maximizes the  quantity winj, 
where nj is the number  of pixels in the  block  assigned to the 
class j ,  and wj is a weight  which represents the  “importance” 
of the class in this context. 

3. ASSIGNING PRIORITIES 

The role of  an encoder  is to produce a compact  representation 
of  the data, for  example by minimizing the  average symbol 
length  (entropy  coding).  Additionally, a progressive encoder 
should order the  data  in  such a way that the most 
“important” segments of the data are transmitted first. Bit- 
plane  ordering  provides  perhaps  the simplest instance of 
progressive  encoding.  Assume  for  the time being  that we a~ 
dealing  with  monochromatic images. Bit-plane ordering 
organizes  the  encoded  bistream in such a way that  the Most 
Significant Bits (MSB)  of  all pixels in the image are 
transmitted first, followed  by the second  most significant 
bits of all pixels, and so on. If only a part of the bitstream 
is  transmitted, a coarse  version  of  the original image is 
received,  additional bits will contribute to enhance the 
received image. In the case of bit-plane  ordering, the concept 
of “importance”  has a clear Signal-to-Noise Ratio 
counterpart  (indeed,  each  bit contributes to around 6 dB of 
quantization SNR). 

For  the case of color  images  considered in our examples, we 
slightly modify the bit-plane  ordering algorithm to account 



. for the intrinsic vectorial  representation of the color data. 
The RGB tristimuli are first converted into YCrCb 
tristimuli by means of a suitable linear  transformation [9]. 
We assume that  each component of a YCrCb tristimulus is 
quantized  with 8 bits. The “Y” component of a tristimulus 
represents  the  pixel luminance and assumes only  positive 
values, while  the  “Cr” and “Cb” components (which 
represent  the  chrominance channels) can take on both 
positive  and  negative  values,  and  therefore can be represented 
by one bit for the sign  and  seven bits for the magnitude. To 
encode the  color values, we use a “generalized” bit-plane 
representation:  each atomic element is a triplet of bits, one 
from  each component of the tristimulus. In  particular,  the 
“most significan triplet” is composed by the  MSB of  the 
luminance and  by the sign bits of the  two  chrominance 
channels. The “second  most significant triplet”  is  composed 
by the second  most significant bit  of  the  luminance and  by 
the  most significant bit of the 7-bit representation of  the 
chrominance  magnitudes, and so on. For simplicity’s sake, 
we will still use  the terminology “bit plane  ordering”  in  the 
following, although the reader should  mentally substitute 
the  word  “triplet” for “bit”. 

To keep  science  value into account, we should  modify this 
simple notion  of “importance” by considering a combination 
of bit-plane  index and classification value. In other  words, 
the MSBs as  well as other bit  planes of the  most 
“scientifically important” image segments should be 
transmitted  before  any  piece of  data from image areas 
belonging to other classes. For instance, in our example, we 
may  want to transmit, say, the first 4 bit  planes of pixels 
belonging to the class “Basalt”  before transmitting any bits 
for the classes  “Obsidian”,  “Shadow”  or  “Sand”.  This can  be 
achieved  by setting a priority value to the  each  bit  of  the 
data stream, obtained  by suitably combining the “class” 
index  and  the bit-plane index. Two possible priority 
assignments relative to our  experiment are shown in Figure 
1 (a) and (b). The  difference  between  the  priority  functions of 
Figure 1 (a) and (b) is  in  the  “softness” of priority 
assignment among the classes “Sand”,  “Shadow”,  Obsidian” 
and “Basalt”. For example, in both  cases  the most 
significant bit of a pixel  belonging to the  “Obsidian”  class 
has  higher priority than  the least significant bit  (LSB) of a 
pixel belonging to the “Basalt” class, since we don’t want to 
wait  for  all  the  data coming from  “Basalt”  areas  before 
receiving information about the  “Obsidian” ones. More 
specifically, the MSB of a pixel belonging to the 
“Obsidian” class has the same priority as the fourth most 
significant bit of a pixel belonging to the  “Basalt” class in 
the case of Figure 1 (a), and  of its second  most  significant 
bit in the case of Figure 1 (b). However,  all  bits of  any 
pixels classified as “Outlier” have  higher  priority  values than 
the rest, since we assume that any  “unexpected”  feature is 
“infinitely more interesting” than anything we  may  have 
already seen. The choice of priority  function  should  be based 
on 1)  the  confidence  we  have  on the science  classification 

and 2) the relative  importance of different  science classes to 
the  final  user. 

(b)  

Figure 1: Two possible priority assignments as a function 
of science class and bit-plane  index. 

Thus, it is these “priority” values that represent  the  overall 
importance of a bit of information. It  should be  clear  that 
our definition of priority is fairly arbitrary; it depends on: a) 
the  science  processing  module and the “scientific  priority” 
assigned to the classes; b) the signal  representation, which 
may  be extremely  more  complex  than the simple bit-plane 
ordering  described above; c) the combination rule between 



science classes and pixel representation.  Given a particular 
definition of priority, the sum of the bit priorities of the data 
transmitted in a mission  will  be  given the evocative name of 
science return. The optimal communication system is thus 
the one that maximizes the  science  return in a mission, 
given  the  overall data rate and memory constraints. We  will 
discuss in the  next  section a technique  that  ensures a high 
rate  of  science  return by means  of a very simple buffer 
management algorithm. 
In closing this section, we should point out that in  our 
experiment the data  is  not  actually  “compressed”, in the 
sense that, to receive  an  image  in  its integrity, we need to 
transmit as many bits as the original raw  data  (actually, 
additional bits are  transmitted  in the form of  “metadata”, as 
explained in the next section). The design  of suitable forms 
of  data  compression  will  be the goal of future work; still, 
the results presented  here  show  that  by simply adopting a 
suitable methodology of  prioritized  buffer  management,  the 
science  return  can be significantly increased  with  respect to 
traditional  content-blind  techniques. 

4. PRIORITIZED BUFFER MANAGEMENT 

A buffer  is  required  every  time  there  is  disparity  between  the 
encoded  data rate and the  downlink transmission rate. The 
buffer  can  accepts  in input, output, and trash segments of 
data. A “data segment” (or “buffer  packet”)  is  the smallest 
data  unit  handled  by the buffer. In principle, a data  segment 
could  be a single bit. However,  for the purpose of the 
present  work, a data segments is  the set of bits 
corresponding to a given  bit-plane of  an 8x8 image blocks. 
The reason  for choosing such a coarse  granularity  resides in 
the  fact that, due to the  prioritized  buffer  management 
described in the following, the decoder,  upon  reception  of a 
segment of data, cannot autonomously infer its location in 
the image. Thus, some additional information, in the form 
of  “metadata”,  needs to be transmitted  with  each data 
segment. By using  larger granularity, we  can limit the 
relative size of the metadata. However, it is  easy  to  convince 
oneself  that finer granularity  ensure a more  efficient 
utilization of the buffer. 

Our  buffer  is  organized  according to the  following  rules: 
1 .  The buffer  is  an  ordered list of  data segments, whose 

ends  are  named head and tad respectively. A partial order 
is established in the list, and is determined  by  the 
priority of the data segments (as defined in the  previous 
section). In  other  words, suppose that a segment s, in 
the  list  has higher priority than another segment s2 if in 
the list. Then s ,  is always positioned closest to the head 
than s, (we will  say that s I  is placed above s2 and 
therefore s2 is  placed below sI). 

2. Data segments are output from  the head  of the buffer 
only. The output rate  is constant (indicated  by R,,,), 
unless  the buffer is empty, in which case R,,, =O. 

An input data segment will always be accommodated in 
the  buffer  unless  the  buffer is full. The data segment is 
placed  below  any  other segment with  equal  or  higher 
priority. Once a data segment is in the  buffer, its 
position  with  respect to the other segments never 
changes. 
If the  buffer is full  when  the  current input data  segment 
is available, the  current input segment will be 
accommodated  only if there is some other segment with 
lower priority (in which case the segment will  be  placed 
at the tail of the buffer is discarded).  If all segments in 
the  buffer  have priority equal to or higher  than  the 
current input segment, the current input segment is 
discarded. 

An example of buffer evolution is shown in Figure 2. Only 
two priorities are considered  here: the lower  priority 
segments are  represented  by the letter “A” and light blue 
color, while the higher priority segments are  labeled  by  the 
letter “B’ and  colored in dark blue. The number  on each 
segment  represents  the  corresponding input order.  Note that, 
due  to  the  limited  buffer size and to the insufficient output 
rate, the segment of index 5 has to be  discarded.  It is  not by 
chance  that a segment of lower priority is discarded:  our 
buffer  management strategy ensures that only segments of 
the lowest priority in the buffer  are  discarded,  and  that  only 
segments of the highest priority in the buffer  are output. In 
general, when a very high-priority  data segment is input in 
the buffer, it is output within little time, while a very  low- 
priority segment is trashed  after little time. Segments of 
average priority  usually  spend  much  more  time  in a “limbo” 
situation inside the buffer;  whether  they  will eventually be 
output or discarded  depends  on the priority characteristics of 
the  future  data  presented to the buffer. A discussion of  the 
“discriminatory  power” of a prioritized  buffer  is  presented in 
Section 5. 

Figure 2: Evolution of a prioritized buffer. 



. Another possible implementation of the buffer is shown in 
Figure 3. This implementation uses  separate  buffer  for  each 
priority. This method  can  be used to emulate the previous 
method  if the sum of the individual  buffer sizes is equal to 
the size of the entire buffer. 

- 
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Figure 3: Evolution of a prioritized buffer with separate 
buffers for each  priority. 

Concrete examples of the  improved  performance  in  terms of 
science return attainable by the prioritized  buffer  strategy are 
shown  in Figures 4 and 5. The data is  collected  and presented 
to  the  buffer  according to the scenario described in Section 2. 
In particular, the images were taken in a  sequence:  each 
image was  acquired only after the previous image had  been 
processed  and input to the buffer.  Once an image was 
acquired, it was first color classified (as represented  in  the 
second row), and the priorities of  each  bit (triplet) plane for 
each 8x8 block were  determined. Then, the image was 
blockwise  scanned in raster  order, and the  bit (triplet) planes 
for  each  block  were  sequentially input into the buffer.  The 
data relative to a block was  input  in the buffer  only  after  all 
the bit-planes in the previously  scanned  block were 
processed.  It  was  assumed  that  the  rate  of the data into the 
buffer (Ri,J was 5 times the output rate R,,,, and that  the 
size of the buffer  was  16 times smaller than the size of  an 
image. In  the  third  row  we  show  the decoded data output 
from  the  buffer.  As  a comparison, in the fourth row we 
show  the result assuming when  no science classification was 
performed, i.e. when the priority of a  bit-plane  is determined 
solely by its index. In this case,  the encoder knows  nothing 
about the semantics of the image, and  therefore puts the 
same effort to transmit, for example, bits belonging  to  the 
“Sand” class and  to  the  “Basalt” class. The difference 
between the two  cases in terms of science  return is 
appreciable by simple visual inspection; it is  quantified by 
the numbers in the small  colored cells at the  upper  left 
corner of the figures. These are the number of data  segments 
belonging  to  each class for each original image  (second  row) 
and for each  transmitted  image  (third and fourth row). It can 
be  seen  that  very  few (if any) data segments  corresponding to 
the  “Sand” class are transmitted  with  our  prioritized strategy, 
while  many  more  data segment belonging to the “Basalt” 
class are  transmitted  than in the science-unaware case. In 

particular,  note  that all data segments corresponding to the 
“Outlier” class are  transmitted in the  science-prioritized case. 

5. PERFORMANCE MEASURES 

First we consider  a  case  in  which  all  data segments are of 
equal size. Assume that no more  than K data segments can 
be transmitted  during  a  given period  of time T .  We make 
several  conceptual definitions in order to quantify the 
performance  of the onboard  science  processing  and  buffer 
management  system. 

An ideal  grounded scientist designs experiments to collect 
and transmit exactly  the K data segments deemed most 
valuable based  on a priori information available to the 
scientist on the ground  before  any data is actually  collected 
by the  spacecraft. An ideal  onboard scientist designs 
experiments to collect  a lot more  than K segments on  the 
expectation  that  many potentially valuable  discoveries 
cannot be  anticipated from a priori information. Later, 
onboard  the  spacecraft, this mythical scientist reviews  the 
data  collected  and culls the K most  valuable segments for 
transmission to earth. This a posteriori determination of 
value is based  not  only on the a priori information available 
to the  grounded scientist, but also on the content of the data 
actually  collected. 

These  two  paradigms  serve as useful performance 
benchmarks  because the goal of the  onboard  science 
processing and buffer  management  system is to approximate 
the selectivity of the ideal  onboard scientist. Measured 
against the paradigm  of  the  ideal  onboard scientist, the 
automated  onboard system will always fall short. However, 
if  the  performance gap between the ideal  grounded and 
onboard scientists is large, any  decent approximation by  the 
automated system to the selectivity of the ideal  onboard 
scientist will still accomplish large gains in total  data value 
returned.  As  an example, suppose that, by going onboard 
instead  of staying on the ground,  an  ideal scientist could 
quadruple the  total  value of  data  returned  by  peeking at the 
content of the  data  before committing scarce  downlink 
resources. Then, if the automated  onboard system performs 
only  half as well as the  ideal  onboard scientist, it would still 
double the total  data  value  returned by the  most  carefully 
designed  experiments  of  any  grounded  scientist. 

Thus the  performance  assessment  of the automated  system 
can be  conceptually  separated into two components: first, 
the (potentially huge) gains obtainable by substituting an 
ideal  onboard scientist for an  ideal  grounded scientist, and, 
second, the (hopefully small) losses suffered  by substituting 
the  automated  onboard  system for an  ideal  onboard scientist. 
The first of these two components: (a) is guaranteed to be a 
nonnegative gain, because the onboard scientist can  always 
choose to ignore the content of  the  data and transmit exactly 
the same data as the grounded scientist, and (b) is 



Figure 4: Simulation results. Top row: original images. Second row: classification maps. Third row: Data  transmitted  with 
prioritized  buffer. Fourth row: data  transmitted  without  science prioritization. The prioritization function of Figure 1 was 
used. The size of the  buffer  was 16 times smaller  than  the size of one original image. The output rate R,,, was 5 times 
smaller than  the input buffer rate R,. 

independent  of  the  onboard system and  therefore  can be 
estimated entirely within  the scientific community 
without any reference  to the  particular  onboard system 
implemented. This conceptual  separation of  performance 
components allows us to focus  our attention on 
measuring how  well the  automated  onboard system 
performs  relative to what  it is trying to approximate: by 
how much  does  the  automated system fall short in 
mimicking the  decision-making and  data-handling  of  the 
ideal  onboard scientist? This performance  component  itself 
consists of several sub-components reflecting on  the 
goodness of various pieces of the full onboard system. 
The most important of these is how  well does the onboard 
science  processor  duplicates  the classifications and 
valuations of the  ideal  onboard scientist. But,  even if  these 
valuations were exactly the same, the  onboard  prioritized 
buffer  manager  would still not select exactly the same K 
segments for transmission, due to finite limits on 
processing  power  and  buffer  space. 

To evaluate  the  performance of the  onboard  buffer manager 
in isolation  from  that of the  onboard science processor, we 
define  the discriminatory power of the  onboard  buffer 
manager in terms of its ability to process for transmission 

the same K segments that  are deemed most important by 
either an  ideal  onboard scientist or an  automated  onboard 
science  processing system. A discriminatory  power  of 1 
means  that  exactly  the same K segments are  selected  for 
transmission, while a discriminatory  power less than 1 
measures the ratio of  the  total value of the K segments 
transmitted to the total value of the K segments deemed 
most important. 

Here  are  some of the practical system considerations  that 
can  cause  the  buffer  manager's  discriminatory  power to be 
lower than 1. First, if the size of the buffer  is  very small, 
then statistical fluctuations in the  value of data flowing 
into the  buffer  can  temporarily  overload  the  buffer  with 
high-value  data,  some  of  which  must  necessarily  be lost, 
and at other times flood  the  buffer  with  low-value data, 
some of  which  gets  transmitted  because  nothing  better is 
available at the time. This problem  can be  greatly 
exacerbated  if the statistics of the  collected  data are 
dramatically  non-stationary in time. The greater the non- 
stationarity, the bigger  are the buffers required to average 
effectively  over collection periods  of  low-value and high- 
value  data. 



Figure 5: See caption of Figure 4. 

Second, finite onboard  processing  power  will limit the 
amount of sorting and  data-handling  affordable to the buffer 
manager, and thus the  best K segments might  not be 
selected for  transmission  even if the  buffer size were infinite 
and no segments ever had to be  discarded. Third, the 
prioritized  handling of buffer segments can  require a 
significant amount of  “metadata” to be  transmitted  along 
with the raw data, to instruct the ground  processor how to 
resort and reassemble the received segments. Given a fixed 
downlink constraint, the requirement to send  metadata 
reduces  the  number  of transmittable segments to something 
lower than K.  This overhead due to metadata  increases as the 
granularity of the classifications produced  by the onboard 
science  processor, and the priorities handled  by the buffer 
manager,  becomes finer and finer. 

To analyze  how  well the prioritized buffer  management 
algorithms performed in our experiment, we  gathered some 
statistics that give a more detailed look at the buffer 
manager’s  discriminatoy  power  than our previous definition 
of discriminatory  power as a simple ratio. Figure 6 shows 
histograms of the  incremental  science  values of  buffer 

packets  transmitted, lost, or remaining in the buffer at the 
end  of the experiment. The three histograms are almost 
completely non-intersecting. In this test, all packets  with 
values 15 through 20 were transmitted, along with  most of 
the  14’s and about  half of the 13’s. At the other end of the 
scale, all  packets  with  values 1 through 6 were discarded, 
along  with about half  of  the 7’s. All packets  with  values 8 
through 12 were in limbo, still occupying the buffer, at the 
end  of the experiment. Up  to this point in the data 
transmission  process, the only  improvement to be offered by 
an  ideal  onboard scientist over the automated  buffer 
manager‘s  performance (assuming the same assignment of 
segment  values  and  the same downlink constraint) would be 
the  earlier shipping of the few value-I4 packets still 
remaining in the buffer, leaving some extra untransmitted 
value-I3 packets in the buffer in their place.  Except for this 
one small  difference, the ideal  onboard scientist would  have 
selected  exactly  the same packets for transmission as the 
automated  buffer  manager. Then, depending on the  values of 
the data arriving  after  the  experiment  was  ended,  the  value-14 
or value-13  packets  remaining in the  buffer  would  eventually 
either get transmitted  anyway  or else get discarded  if  the 



buffer  were  suddenly  overwhelmed  with  higher-value 
packets. Only in this latter case would there be  any 
difference at all  between  the total values  transmitted by the 
ideal  onboard  scientist and the  automated  buffer  manager, and 
in this case  the  value difference  would  be just 1 value-unit 
multiplied by the number  of  value-14 segments that are 
ultimately discarded  due to the slight non-optimality of  the 
buffer  manager's  operations. 
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Figure 6: Histogram of transmitted, buffer, and lost data. 
Rin=6Rout. The size of the  buffer  and  of the image were  the 
same, and  the prioritization function of Figure 2 was  used. 
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Figure 7 :  Histogram of transmitted, buffer, and lost data. 
Ri,=6R,,,. The size of the buffer  was 4 times less than  the 
size of the image, and the prioritization function of Figure 2 
was  used. 
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Figure 8: Histogram of transmitted, buffer, and lost data. 
Ri,,=6R,,,. The size of the buffer  was 4 times less than  the 
size of the image, and the prioritization function of Figure 2 
was  used. 

Up  to now, we have  assumed  for simplicity that  all data 
segments are of equal size. In actuality, the  data segments 
produced  by a good progressive compression algorithm are 
highly  variable  and  often  unpredictable in size. It  is  easy to 
generalize the paradigms  of the ideal  grounded scientist and 
the  ideal  onboard scientist to the  case of variable data 
segment sizes. Now,  instead  of facing a fixed  budget of K 
segments, the  goal of  each type of scientist is simply to 
maximize  the  total  value of a set  of K' segments with  sizes 
that  together do not  exceed a fixed total downlink  budget of 
m bits (over a given  period of time 7') 

The variable  compressibility  of data segments greatly widens 
the  benchmark  performance gap between  the  ideal  onboard 
and grounded  scientists.  Whereas the grounded scientist can 
only guess at the downlink load  demanded  by a given data 
segment, the onboard scientist can optimize the value 
returned per bit of data transmitted, thus optimizing the 
allocation of downlink  resources. This optimization of 
value  per  bit  transmitted  can also be  accomplished  with good 
efficiency  by  an  automated  onboard system (having 
sufficient  computational  and  memory  resources),  because  the 
downlink rate constraint and the relevant  data segment sizes 
are simple numerical  quantities  that  are  known to the 
onboard  buffer  manager. Thus, we expect  the  automated 
onboard  processor  to  reap a high  proportion of the extra gain 
achievable  by  an  ideal  onboard scientist due to having 
knowledge  of  variable  compressed  data sizes that are  not 
available to the  ideal  grounded scientist. The overall 
efficiency  of  the  onboard  buffer  manager  in  approximating 
the  selectivity  of  the  ideal  onboard scientist can be measured 
by using a slight generalization of the discriminatory power 
ratio  defined  earlier  for  fixed  segment sizes, namely the ratio 
of the total value of the K" segments selected  for 
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transmission by the onboard  buffer  manager to the total 
value  of the K’ segments deemed most important by  the 
ideal  onboard scientist, with  both sets of K” or K’ segments 
satisfying the downlink constraint on the total number of 
bits transmittable. 

6. CONCLUSIONS 
We have  presented  a  scheme for progressive data 
transmission that incorporates  science-based priority to the 
data processing. The limited resources  of  a  spacecraft (in 
terms of downlink data rate and  buffer  size)  can  be optimally 
exploited by means of our prioritized  buffer  management 
scheme, thereby maximizing the science return of a  mission. 
One of the results of our analysis of the  prioritized buffer 
management  scheme is that “virtually ideal” results can be 
achieved  with  modest-sized  buffers (at least compared to 
large  data storage buffers already  needed  onboard for other 
reasons such as waiting for the next station pass). An  “ideal 
buffer  manager”,  facing  a collect-to-transmit ratio of X ,  
would allow  exactly  the  most  valuable Fraction 1/X of  the 
total (compressed, in general) data volume to be  transmitted. 
Although  an  ideal  buffer  manager  would in principle require 
an infinite buffer, we demonstrate  that  very modest-sized 
buffers  are sufficient to “discriminate” almost ideally 
between  the  valuable  data segments that  should be 
transmitted  and the less valuable ones that  should  be  trashed. 
Thus, we  are not anticipating that  the intelligent buffer 
management system will add significantly to existing 
onboard  storage  requirements. 

Future research  will  be  devoted to elaborating on existing 
schemes for Region-Of-Interest  coding [lo], in  order to 
effectively  compress  the  prioritized data and to minimize the 
need for  metadata.  Error  resilience  schemes  will also be 
developed  for robust transmission in the  prioritized case. 

Finally, we  would like to point out that our onboard  science 
processing and prioritized  buffer  management system is 
envisioned  as  a  tool that scientists can utilize directly  in 
planning their data collection efforts, not just  as a “black 
box”  that  processes their data  after  they  have gathered it. If 
scientists gain  confidence in this tool  they  will be able to 
design their experiments to deliberately collect far  more data 
than  could  ever fit through the downlink, because  the 
onboard  system  will  keep the downlink  busy  with the best 
data collected. So this system is  not at the stage of trying to 
gain  “science community acceptance  of  the results”, rather 
we  are at the stage of  demonstrating to scientists a 
potentially powerful  tool  that  will  enable  them to collect 
and select  the  data  they are most  interested in. This will 
probably led to custom design  of  “front end”  science 
processing  and/or  data  compression  modules  for different 
science applications (with the corresponding scientists 
intimately involved in developing  the  science  processing 

algorithms), but  with  the commonality of being handled  by 
the  same  priority-based data management system. 
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